Auto Generate From Data Connection
Info
Auto data generation from data connection is a paid feature. Try the free trial here.
Creating a data generator based on only a data connection to Postgres.
Requirements
- 5 minutes
- Git
- Gradle
- Docker
Get Started
First, we will clone the data-caterer-example repo which will already have the base project setup required.
git clone git@github.com:pflooky/data-caterer-example.git
Plan Setup
Create a new Java or Scala class.
- Java:
src/main/java/com/github/pflooky/plan/MyAdvancedAutomatedJavaPlanRun.java
- Scala:
src/main/scala/com/github/pflooky/plan/MyAdvancedAutomatedPlanRun.scala
Make sure your class extends PlanRun
.
import com.github.pflooky.datacaterer.java.api.PlanRun;
...
public class MyAdvancedAutomatedJavaPlanRun extends PlanRun {
{
var autoRun = configuration()
.postgres("my_postgres", "jdbc:postgresql://host.docker.internal:5432/customer") (1)
.enableGeneratePlanAndTasks(true) (2)
.generatedPlanAndTaskFolderPath("/opt/app/data/generated") (3)
.enableUniqueCheck(true) (4)
.generatedReportsFolderPath("/opt/app/data/report");
execute(autoRun);
}
}
import com.github.pflooky.datacaterer.api.PlanRun
...
class MyAdvancedAutomatedPlanRun extends PlanRun {
val autoRun = configuration
.postgres("my_postgres", "jdbc:postgresql://host.docker.internal:5432/customer") (1)
.enableGeneratePlanAndTasks(true) (2)
.generatedPlanAndTaskFolderPath("/opt/app/data/generated") (3)
.enableUniqueCheck(true) (4)
.generatedReportsFolderPath("/opt/app/data/report")
execute(configuration = autoRun)
}
In the above code, we note the following:
- Data source configuration to a Postgres data source called
my_postgres
- We have enabled the flag
enableGeneratePlanAndTasks
which tells Data Caterer to go tomy_postgres
and generate data for all the tables found under the databasecustomer
(which is defined in the connection string). - The config
generatedPlanAndTaskFolderPath
defines where the metadata that is gathered frommy_postgres
should be saved at so that we could re-use it later. enableUniqueCheck
is set to true to ensure that generated data is unique based on primary key or foreign key definitions.
Note
Unique check will only ensure generated data is unique. Any existing data in your data source is not taken into account, so generated data may fail to insert depending on the data source restrictions
Postgres Setup
If you don't have your own Postgres up and running, you can set up and run an instance configured in the docker
folder via.
cd docker
docker-compose up -d postgres
docker exec docker-postgresserver-1 psql -Upostgres -d customer -c '\dt+ account.*'
This will create the tables found under docker/data/sql/postgres/customer.sql
. You can change this file to contain
your own tables. We can see there are 4 tables created for us, accounts, balances, transactions and mapping
.
Run
Let's try run.
cd ..
./run.sh
#input class MyAdvancedAutomatedJavaPlanRun or MyAdvancedAutomatedPlanRun
#after completing
docker exec docker-postgresserver-1 psql -Upostgres -d customer -c 'select * from account.accounts limit 1;'
It should look something like this.
id | account_number | account_status | created_by | created_by_fixed_length | customer_id_int | customer_id_smallint | customer_id_bigint | customer_id_decimal | customer_id_real | customer_id_double | open_date | open_timestamp | last_opened_time | payload_bytes
--------+-----------------+----------------+------------+-------------------------+-----------------+----------------------+--------------------+--------------------------+------------------+--------------------+------------+-------------------------+------------------+------------------------------------------------------------------------------------------------------------------------------------
100414 | 5uROOVOUyQUbubN | h3H | SfA0eZJcTm | CuRw | 13 | 42 | 6041 | 76987.745612542900000000 | 91866.78 | 66400.37433202339 | 2023-03-05 | 2023-08-14 11:33:11.343 | 23:58:01.736 | \x604d315d4547616e6a233050415373317274736f5e682d516132524f3d23233c37463463322f342d34376d597e665d6b3d395b4238284028622b7d6d2b4f5042
(1 row)
The data that gets inserted will follow the foreign keys that are defined within Postgres and also ensure the insertion order is correct.
Also check the HTML report that gets generated under docker/sample/report/index.html
. You can see a summary of what
was generated along with other metadata.
You can now look to play around with other tables or data sources and auto generate for them.
Additional Topics
Learn From Existing Data
If you have any existing data within your data source, Data Caterer will gather metadata about the existing data to help guide it when generating new data. There are configurations that can help tune the metadata analysis found here.
Filter Out Schema/Tables
As part of your connection definition, you can define any schemas and/or tables your don't want to generate data for. In
the example below, it will not generate any data for any tables under the history
and audit
schemas. Also, any
table with the name balances
or transactions
in any schema will also not have data generated.
var autoRun = configuration()
.postgres(
"my_postgres",
"jdbc:postgresql://host.docker.internal:5432/customer",
Map.of(
"filterOutSchema", "history, audit",
"filterOutTable", "balances, transactions")
)
)
val autoRun = configuration
.postgres(
"my_postgres",
"jdbc:postgresql://host.docker.internal:5432/customer",
Map(
"filterOutSchema" -> "history, audit",
"filterOutTable" -> "balances, transactions")
)
)
Define record count
You can control the record count per sub data source via numRecordsPerStep
.
var autoRun = configuration()
...
.numRecordsPerStep(100)
execute(autoRun)
val autoRun = configuration
...
.numRecordsPerStep(100)
execute(configuration = autoRun)